Abelian groups and quadratic residues in weak arithmetic
نویسنده
چکیده
We investigate the provability of some properties of abelian groups and quadratic residues in variants of bounded arithmetic. Specifically, we show that the structure theorem for finite abelian groups is provable in S 2 + iWPHP(Σ b 1), and use it to derive Fermat’s little theorem and Euler’s criterion for the Legendre symbol in S 2 + iWPHP(PV ) extended by the pigeonhole principle PHP(PV ). We prove the quadratic reciprocity theorem (including the supplementary laws) in the arithmetic theories T 0 2 +Count2(PV ) and I∆0 + Count2(∆0) with modulo-2 counting principles.
منابع مشابه
Genus Two Veech Surfaces Arising from General Quadratic Differentials
We study Veech surfaces of genus 2 arising from quadratic differentials that are not squares of abelian differentials. We prove that all such surfaces of type (2, 2) and (2, 1, 1) are arithmetic. In (1, 1, 1, 1) case, we reduce the question to abelian differentials of type (2, 2) on hyperelliptic genus 3 surfaces with singularities at Weierstrass points, and we give an example of a non-arithmet...
متن کاملRamsey Multiplicity of Linear Patterns in Certain Finite Abelian Groups
Abstract. It is well known (and a result of Goodman) that a random 2-colouring of the edges of a large complete graph Kn contains asymptotically (in n) the minimum number of monochromatic triangles (K3s). Erdős conjectured that a random 2-colouring also minimises the number of monochromatic K4s, but his conjecture was disproved by Thomason in 1989. The question of determining for which small gr...
متن کاملOn continuous cohomology of locally compact Abelian groups and bilinear maps
Let $A$ be an abelian topological group and $B$ a trivial topological $A$-module. In this paper we define the second bilinear cohomology with a trivial coefficient. We show that every abelian group can be embedded in a central extension of abelian groups with bilinear cocycle. Also we show that in the category of locally compact abelian groups a central extension with a continuous section can b...
متن کاملSelf-similar fractals and arithmetic dynamics
The concept of self-similarity on subsets of algebraic varieties is defined by considering algebraic endomorphisms of the variety as `similarity' maps. Self-similar fractals are subsets of algebraic varieties which can be written as a finite and disjoint union of `similar' copies. Fractals provide a framework in which, one can unite some results and conjectures in Diophantine g...
متن کاملBifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix
The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Log. Q.
دوره 56 شماره
صفحات -
تاریخ انتشار 2010